Algebraic density property of homogeneous spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness Property for Spherical Homogeneous Spaces

Let G be a connected reductive group. Recall that a homogeneous G-space X is called spherical if a Borel subgroup B ⊂ G has an open orbit on X . To X one assigns certain combinatorial invariants: the weight lattice, the valuation cone and the set of B-stable prime divisors. We prove that two spherical homogeneous spaces with the same combinatorial invariants are equivariantly isomorphic. Furthe...

متن کامل

On the Geometry of Algebraic Groups and Homogeneous Spaces

Given a connected algebraic group G over an algebraically closed field and a G-homogeneous space X , we describe the Chow ring of G and the rational Chow ring of X , with special attention to the Picard group. Also, we investigate the Albanese and the “anti-affine” fibrations of G and X .

متن کامل

Algebraic distance in algebraic cone metric spaces and its properties

In this paper, we prove some properties of algebraic cone metric spaces and introduce the notion of algebraic distance in an algebraic cone metric space. As an application, we obtain some famous fixed point results in the framework of this algebraic distance.

متن کامل

Frames and Homogeneous Spaces

Let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . In this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . As an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transformation Groups

سال: 2010

ISSN: 1083-4362,1531-586X

DOI: 10.1007/s00031-010-9091-8